<u>ADVANCED COMMUNICATION LAB</u> B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) Scheme]

Course Code 17ECL76	CIE Marks	40
Number of Lecture01HrTutorial (Instructions)Hours/Week+ 02 Hours Laboratory = 03	SEE Marks	60
RBT Levels L1, L2, L3	Exam Hours	03

CREDITS – 02

Course objectives: This course will enable students to:

- Design and demonstrate the digital modulation techniques
- Demonstrate and measure the wave propagation in microstrip antennas
- Characteristics of microstrip devices and measurement of its parameters.
- Model an optical communication system and study its characteristics.
- Simulate the digital communication concepts and compute and display various parameters along with plots/figures.

Laboratory Experiments

PART-A: Following Experiments No. 1 to 4 has to be performed using discrete components.

- 1. Time Division Multiplexing and Demultiplexing of two bandlimited signals.
- 2. ASK generation and detection
- 3. FSK generation and detection
- 4. PSK generation and detection
- 5. Measurement of frequency, guide wavelength, power, VSWR and attenuation in microwave test bench.
- 6. Measurement of directivity and gain of microstrip dipole and Yagi antennas.

7. Determination of

- a. Coupling and isolation characteristics of microstrip directional coupler.
- b. Resonance characteristics of microstrip ring resonator and computation of dielectric constant of the substrate.
- c. Power division and isolation of microstrip power divider.
- 8. Measurement of propagation loss, bending loss and numerical aperture of an optical fiber.

PART-B: Simulation Experiments using SCILAB/MATLAB/Simulink or LabView

- 1. Simulate NRZ, RZ, half-sinusoid and raised cosine pulses and generate eye diagram for binary polar signaling.
- 2. Simulate the Pulse code modulation and demodulation system and display the waveforms.
- 3. Simulate the QPSK transmitter and receiver. Plot the signals and its constellation diagram.
- **4.** Test the performance of a binary differential phase shift keying system by simulating the non-coherent detection of binary DPSK.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Determine the characteristics and response of microwave devices and optical waveguide.
- Determine the characteristics of microstrip antennas and devices and compute the parameters associated with it.
- Simulate the digital modulation schemes with the display of waveforms and computation of performance parameters.
- Design and test the digital modulation circuits/systems and display the waveforms.

Conduct of Practical Examination:

- All laboratory experiments are to be considered for practical examination.
- For examination one question from **PART-A** and one question from **PART-B or** only one question from **PART-B** experiments based on the complexity, to be set.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.